The Motheaten Mutation Rescues B Cell Signaling and Development in CD45-deficient Mice

نویسندگان

  • Giovanni Pani
  • Katherine A. Siminovitch
  • Christopher J. Paige
چکیده

The cytosolic SHP-1 and transmembrane CD45 protein tyrosine phosphatases (PTP) play critical roles in regulating signal transduction via the B cell antigen receptor (BCR). These PTPs differ, however, in their effects on BCR function. For example, BCR-mediated mitogenesis is essentially ablated in mice lacking CD45 (CD45(-)), but is enhanced in SHP-1-deficient motheaten (me) and viable motheaten (mev) mice. To determine whether these PTPs act independently or coordinately in modulating the physiologic outcome of BCR engagement, we assessed B cell development and signaling in CD45-deficient mev (CD45-/SHP-1-) mice. Here we report that the CD45-/SHP-1-) cells undergo appropriate induction of protein kinase activity, mitogen-activated protein kinase activation, and proliferative responses after BCR aggregation. However, BCR-elicited increases in the tyrosine phosphorylation of several SHP-1-associated phosphoproteins, including CD19, were substantially enhanced in CD45-/SHP-1-, compared to wild-type and CD45- cells. In addition, we observed that the patterns of cell surface expression of mu, delta, and CD5, which distinguish the PTP-deficient from normal mice, are largely restored to normal levels in the double mutant animals. These findings indicate a critical role for the balance of SHP-1 and CD45 activities in determining the outcome of BCR stimulation and suggest that these PTPs act in a coordinate fashion to couple antigen receptor engagement to B cell activation and maturation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of the p56(Lck) Y505F mutation in CD45-deficient mice rescues thymocyte development.

Mice deficient in the transmembrane protein tyrosine phosphatase CD45 exhibit a block in thymocyte development. To determine whether the block in thymocyte development was due to the inability to dephosphorylate the inhibitory phosphorylation site (Y505) in p56(lck) (Lck), we generated CD45-deficient mice that express transgenes for the Lck Y505F mutation and the DO11.10 T-cell antigen receptor...

متن کامل

Development of intestinal intraepithelial lymphocytes, NK cells, and NK 1.1+ T cells in CD45-deficient mice.

The transmembrane protein tyrosine phosphatase CD45 is differentially required for the development and function of B, T, and NK cells, with mice partially deficient for CD45 having a significant inhibition of T cell, but not NK or B cell, development. CD45-mediated signaling has also been implicated in the development of intrathymic, but not extrathymic, intestinal intraepithelial T lymphocytes...

متن کامل

Deficiency of Src homology 2-containing phosphatase 1 results in abnormalities in murine neutrophil function: studies in motheaten mice.

Neutrophils, an essential component of the innate immune system, are regulated in part by signaling pathways involving protein tyrosine phosphorylation. While protein tyrosine kinase functions in regulating neutrophil behavior have been extensively investigated, little is known about the role for specific protein tyrosine phosphatases (PTP) in modulating neutrophil signaling cascades. A key rol...

متن کامل

B and T cells are not required for the viable motheaten phenotype

Hematopoietic cell phosphatase (HCP), encoded by the hcph gene, (also called PTP1C, SHP, SH-PTP1, and PTPN6) is deficient in motheaten (me/me), and the allelic viable motheaten (me(v)/me(v)) mice. Since HCP is expressed in many cell types and protein phosphorylation is a major mechanism of regulating protein function, it is not surprising that the motheaten phenotype is pleiotropic. It is commo...

متن کامل

An extracatalytic function of CD45 in B cells is mediated by CD22.

The receptor-like tyrosine phosphatase CD45 regulates antigen receptor signaling by dephosphorylating the C-terminal inhibitory tyrosine of the src family kinases. However, despite its abundance, the function of the large, alternatively spliced extracellular domain of CD45 has remained elusive. We used normally spliced CD45 transgenes either incorporating a phosphatase-inactivating point mutati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 186  شماره 

صفحات  -

تاریخ انتشار 1997